

Space Physics Researches at SINP

M.I. Panasyuk

Skobeltsyn Institute of Nuclear Physics, MSU

The main activities in space physics:

- Space radiation detectors and other instrumentation to be used in space;
- Development of empirical models of radiation in space; radiation environment monitoring;
- Development of large-scale magnetospheric models;
- Scientific data on Sun/Earth interaction management.

SINP MSU: Experiments in Space

Molniya 3K

Measurements of:

- hot plasma,
- medium and high energy electrons, protons & doses.

SINP/MSU experiments on ISS

SINP/MSU
experiments on
International
Space Station.
Dosimetry:
R-16, SRC,
Scorpion

Radiation environment monitoring

- The cosmic ray anomalous component particles trapping in the Earth's magnetosphere
- The impact of space radiation and other space environment factors on spacecraft systems and materials
- Development of empirical models of radiation in space

ISO/DIS No 15390 "Space environment (natural and artificial). Model of radiation impact by galactic cosmic rays"

The Radiation Monitoring Systemof the Russian Segment of the ISS.Current Status and Results.

- 1) S.P.Korolev Rocket and Space Corporation «Energia»
- 2) Skobeltsyn Institute of Nuclear Physics of Moscow State University
- State Research Centre RF Institute for Biomedical Problems, Russian Academy of Sciences

Current configuration of the radiation monitoring system (RMS)

R-16 dosimeter

DB-8 unit

The R-16 device has been operating on the ISS since summer, 2000.

Four DB-8 sets, Utility Unit and Data Collection Unit, were delivered to the ISS by "Progress M 1-6" on May 23, 2001.
On the 27th of July, 2001 the crew of the 2nd ISS mission mounted the blocks on board of the Service Module and connected up the cables.

The RMS has been operating since August 1, 2001 12:42 UT.

The Russian segment of the ISS

Placements of the RMS blocks

Block	Placement
DB-8 №1	Starboard side,
	behind board № 410
DB-8 №2	Port side, behind
	board № 244 (cabin)
DB-8 №3	Starboard side, behind
	board № 447 (cabin)
DB-8 №4	Starboard side,
	behind board № 435
R-16	Ceiling of Big diameter
	bay, behind
	board № 327
UU	Starboard side, behind
	board № 447 (cabin)
DCU	starboard side, behind
	board № 447 (cabin)

Daily doses measured with unshielded detectors of the first and fourth DB-8 units since January 1 till December 31, 2003

CORONAS-F satellite

- was launched on July 30th, 2001
- circular orbit with altitude ~ 500 km
- inclination ~83°
- scientific information available from August 14th, 2001 to present.

MONITORING of COSMIC RAYS

We present here data obtained by two detector types in the following energy ranges —

1.) semiconductor telescope

- electrons 300 600 keV
- electrons 1.5 3 MeV
- electrons 3 6 MeV
- protons 1 5 MeV
- 2.) scintillator
- protons 14-26 MeV

Electrons 1.5-3 MeV, night local time (L= 1.3, 1.6, 2.2, 3.5, 5.5)

Radiation Measurements onboard Geostationary Satellites

Monitoring Service Aims

- 1. Estimation of Space Environment Radiation Impact on Satellites;
- 2. Examination of Existing Models and Creation New Models of Radiation Fields;
- 3. Collection of Experimental Date to Solve the Problems of the Earht's Magnetosphere Physics

DIERA

Electrostatic Analyzer

Detectors and Measured Parameters

	Detector Types	Energy Range	
Electrostatic analyzer		Ee=1 keV	
Windowed Geiger counter		Ee>40 keV Ei>1 MeV	
Semiconductor Telescop		Ee=0.1-1.5 MeV Ei=12-50 keV	
Scintillator and Semiconductor Telescop		Ee=2-6 MeV Ei=10-300 MeV	
Cherenkov detector		Ee>5 MeV Ei>500 MeV/nucl.	
Dosimeter		Ee>4MeV Ei>50 MeV	

Satellite Experiments						
Satellite		Orbit	Time	Solar Cycle		
Gorizont-34		Geostationary, H=36 600 km	1991 – 1992	Decrease 22 SC		
Gorizont-35		Geostationary, H=36 600 km	1991 – 1994	Decrease 22 SC		
Gorizont-41		Geostationary, H=36 600 km	1993 – 1994	Decrease 2 2 SC		
Glonass	s-60	Circular, H=20 000 km, i=65°	1994 – 1996	Decrease and minimum 22 SC		
Electro		Geostationary, H=36 600 km	1995 - 1998	Minimum and increase 23 SC		
Express	s-11	Geostationary H=36 600 km	1995 - 1996	Minimum 23 SC		
Express	s-A2	Geostationary, H=36 600 km	2000 – p.t.	Maximum and decrease 23 SC		
Express	s-A3	Geostationary, H=36 600 km	2000 – p.t.	Maximum and decrease 23 SC		
Molniya	a-3K	Elliptical, i=62° Ha=40 000 km Hp=500 km,	2001 – p.t.	Maximum and decrease 23 SC		

•

•

•

•

•

•

•

Satellite Orbits:

- 1. COSMOS
- 2. GLONASS
- 3. MOLNIYA
- 4. GORIZONT EXPRESS

Solar Cycles

Radiation
Situation on
Geosynchronous
Orbit
in 2001

Electron Flux

Dynamics on

Geosynchronous

Orbit

